First-principles insights into ultrashort laser spectroscopy of molecular nitrogen
نویسندگان
چکیده
منابع مشابه
Transition-state spectroscopy using ultrashort laser pulses.
To gain a complete understanding of a chemical reaction, it is necessary to determine the structural changes that occur to the reacting molecules during the reaction. Chemists have long dreamed of being able to determine the molecular structure changes that occur during a chemical reaction, including the structures of transition states (TSs). The use of ultrafast spectroscopy to gain a detailed...
متن کاملTerahertz spectroscopy of 2,4,6-trinitrotoluene molecular solids from first principles
We present a computational analysis of the terahertz spectra of the monoclinic and the orthorhombic polymorphs of 2,4,6-trinitrotoluene. Very good agreement with experimental data is found when using density functional theory that includes Tkatchenko-Scheffler pair-wise dispersion interactions. Furthermore, we show that for these polymorphs the theoretical results are only weakly affected by ma...
متن کاملWarm target recoil ion momentum spectroscopy for fragmentation of molecular hydrogen by ultrashort laser pulses.
We demonstrate warm target recoil ion momentum spectroscopy for the fragmentation dynamics of the warm hydrogen molecules at room temperature. The thermal movement effect of the warm molecule is removed by using a correction algorithm in the momentum space. Based on the reconstructed three-dimensional momentum vectors as well as the kinetic energy release spectra, different vibrational states o...
متن کاملA First-Principles Study of the Interaction of Aspirin with Nitrogen-Doped TiO2 Anatase Nanoparticles
Objective(s): First-principles calculations have been carried out to investigate the interaction of aspirin molecule with nitrogen-doped TiO2 anatase nanoparticles using the density functional theory method in order to fully exploit the biosensing capabilities of TiO2 particles. Methods: For this purpose, we have mainly studied the a...
متن کاملLaser injection of ultrashort electron pulses into Wakefield plasma waves.
A novel laser-plasma-based source of relativistic electrons is described. It involves a combination of orthogonally directed laser beams, which are focused in a plasma. One beam excites a wakefield electron plasma wave. Another locally alters the trajectory of some of the electrons in such a way that they can be accelerated and trapped by the wave. With currently available table-top terawatt la...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Electron Spectroscopy and Related Phenomena
سال: 2018
ISSN: 0368-2048
DOI: 10.1016/j.elspec.2018.03.005